Solvent-free Synthesis of Dihydrofuran-fused [60]Fullerene Derivatives by High-speed Vibration Milling

Xin CHENG¹, Guan Wu WANG¹*, Yasujiro MURATA², Koichi KOMATSU²

¹Department of Chemistry, University of Science and Technology of China, Hefei 230026 ²Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

Abstract: Solvent-free reactions of 1, 3-cyclohexanedione, 5, 5-dimethyl-1, 3-cyclohexanedione, 2, 4-pentanedione and ethyl acetoacetate with C_{60} in the presence of $Mn(OAc)_3$ ·2H₂O and ceric ammonium nitrate (CAN) under the high-speed vibration milling conditions afforded dihydrofuran-fused C_{60} derivatives. CAN is the better oxidant than $Mn(OAc)_3$ ·2H₂O in these mechanochemical reactions.

Keywords: [60]Fullerene, mechanochemical, solvent-free, β-dicarbonyl compounds.

Solvent-free organic reactions have been attracting great interest of chemists due to the elimination of the usage of harmful organic solvents, low costs, and simplicity in the procedure¹. Solvent-free mechanochemical reactions of fullerenes were explored and are significant for the reactions of fullerenes because the low solubility of fullerenes in common organic solvents requires large quantity of organic solvents and some novel fullerene reactions could only occur in the solid-state reaction². Since the first solid-state reaction involving C-C bond formation of C₆₀ under high-speed vibration milling (abbreviated as HSVM) was studied in 1996³, there are many reports on reactions of C₆₀ catalyzed by various potassium salts, alkali metals, or solid amines to prepare fullerene dimers and trimers⁴, [4+2] reaction of C_{60} with condensed aromatic compounds⁵, phthalazine⁶ and di(2-pyridyl)-1, 2, 4, 5-tetrazine⁷, reaction of C₆₀ with dichlorodiphenylsilane or dichlorodiphenylgermane in the presence of lithium⁸, reactions of C₆₀ with organic bromides and alkali metals⁹, reaction of C₆₀ and N-alkylglycines with and without aldehydes¹⁰, reaction of C_{60} with active methylene compounds¹¹, and reaction of C₆₀ with diazo compounds¹² under the HSVM conditions. We recently investigated the Mn(OAc)₃·2H₂O-promoted radical reactions of active methylene compounds with C₆₀ in chlorobenzene and toluene¹³. More recently, we and others found that the reactions of β -diketones and β -keto esters with C₆₀ in the presence of Mn(OAc)₃·2H₂O afforded dihydrofuran-fused C₆₀ derivatives¹⁴. As a continuation of our work on the mechanochemical reactions of fullerenes under the HSVM conditions, in this paper we report the mechanochemical reaction of C_{60} with β -dicarbonyl compounds in the presence of Mn(OAc)₃·2H₂O and ceric ammonium nitrate (CAN).

^{*} E-mail: gwang@ustc.edu.cn

Xin CHENG et al.

Scheme 1

Table 1 The yields of dihydrofuran-fused C_{60} derivatives 2 in the presence of $Mn(OAc)_3 \cdot 2H_2O$ and CAN

Substrate	Product	Yield ^a	
		Mn(OAc) ₃ ·2H ₂ O	$(NH_4)_2Ce(NO_3)_6$
0,000	2a	22 (85)	29 (88)
	2b	28 (90)	36 (88)
CH ₃ COCH ₂ COCH ₃	2c	0	23 (82)
CH ₃ COCH ₂ CO ₂ Et	2d	0	27 (84)

^{*a*}Yield in parenthesis based on consumed C₆₀.

The reactions of 1, 3-cyclohexanedione **1a**, 5, 5-dimethyl-1, 3-cyclohexanedione **1b**, 2,4-pentanedione **1c** and ethyl acetoacetate **1d** with C_{60} in the presence of $Mn(OAc)_3$ ·2H₂O were examined under the HSVM conditions. Thus, the mixture of C_{60} (14.4 mg, 0.02 mmol), β -dicarbonyl compound **1** (0.03 mmol) and $Mn(OAc)_3$ ·2H₂O (5.3 mg, 0.02 mmol) was vigorously milled at a frequency of 3500 cycles per minute for 45 min under the HSVM conditions. It was found that only **1a** and **1b** could react with C_{60} in the presence of $Mn(OAc)_3$ ·2H₂O. The combined reaction mixture from two runs was separated on a silica gel column with CS₂/toluene as the eluent to give unreacted C_{60} and dihydrofuran-fused C_{60} derivative **2a** or **2b** (Scheme 1).

The failure for the above mechanochemical reaction of C_{60} with **1c** and **1d** prompted us to investigate other oxidants instead of $Mn(OAc)_3 \cdot 2H_2O$. We found that CAN could promote the reactions of all of the four β -dicarbonyl compounds with C_{60} under the same conditions (**Scheme 1**). The yields of dihydrofuran-fused C_{60} derivatives **2** from the mechanochemical reactions of **1a-e** with C_{60} in the presence of $Mn(OAc)_3 \cdot 2H_2O$ and CAN are listed in **Table 1**.

The ¹H NMR, ¹³C NMR, MS, IR and UV-Vis spectral data of **2a-d** were identical with those reported^{11,14}. From **Table 1**, it is obvious that CAN is a better oxidant than $Mn(OAc)_3 \cdot 2H_2O$ in the mechanochemical reactions of β -dicarbonyl compounds with C₆₀, and the yields based on consumed C₆₀ are pretty high. The yields, especially those based on converted C₆₀, for the mechanochemical reactions promoted by CAN are better than those in chlorobenzene mediated by $Mn(OAc)_3 \cdot 2H_2O$ alone^{14a} or those mediated by bases under HSVM conditions^{11a,11b} in most cases.

In conclusion, the solvent-free reactions of β -dicarbonyl compounds with C₆₀ have

been investigated in the presence of $Mn(OAc)_3 \cdot 2H_2O$ and CAN under the HSVM conditions. CAN is a better oxidant than $Mn(OAc)_3 \cdot 2H_2O$ in these mechanochemical reactions.

Acknowledgments

We are grateful for the financial support from the National Science Fund for Distinguished Young Scholars (20125205), and Anhui Provincial Bureau of Human Resources (2001Z019).

References

- 1. K. Tanaka, F. Toda, Chem. Rev., 2000, 100, 1025.
- 2. a) T. Braun, Fullerene Sci. Techn., 1997, 5, 1291.
- b) K. Komatsu, Y. Murata, G. W. Wang, et al., Fullerene Sci. Techn., 1999, 7, 609.
- 3. G. W. Wang, Y. Murata, K. Komatsu, T. S. M. Wan, Chem. Commun., 1996, 2059.
- 4. a) G. W. Wang, K. Komatsu, Y. Murata, M. Shiro, *Nature*, **1997**, *387*, 583.
 b) K. Komatsu, G. W. Wang, Y. Murata, *et al.*, *J. Org. Chem.*, **1998**, *63*, 9358.
 c) K. Komatsu, K. Fujiwara, Y. Murata, *Chem. Commun.*, **2000**, 1583.
 d) K. Komatsu, K. Fujiwara, Y. Murata, *Chem. Lett.*, **2000**, 1016.
- 5. Y. Murata, N. Kato, K. Fujiwara, K. Komatsu, J. Org. Chem., 1999, 64, 3483.
- 6. Y. Murata, N. Kato, K. Komatsu, J. Org. Chem., 2001, 66, 7235.
- 7. Y. Murata, M. Suzuki, K. Komatsu, Chem. Commun., 2001, 2338.
- 8. a) K. Fujiwara, K. Komatsu, Org. Lett., 2002, 4, 1039.
- b) Y. Murata, A. H. Han, K. Komatsu, *Tetrahedron Lett.*, 2003, 44, 8199.
 9. T. Tanaka, K. Komatsu, *Synth. Commun.*, 1999, 29, 4397.
- 10. G. W. Wang, T. H. Zhang, E. H. Hao, et al., Tetrahedron, 2003, 59, 55.
- a) G. W. Wang, T. H. Zhang, Y. J. Li, et al., Tetrahedron Lett., 2003, 44, 4407.
 b) T. H. Zhang, G. W. Wang, P. Lu, et al., Org. Biomol. Chem., 2004, 2, 1698.
 c) R. F. Peng, G. W. Wang, Y. B. Shen, et al., Synth. Commun., 2004, 34, 2117.
- a) G. W. Wang, Y. J. Li, R. F. Peng, et al., Tetrahedron, 2004, 60, 3921.
 b) Y. J. Li, R. F. Peng, Y. C. Liu, G. W. Wang, Chinese Chem. Lett., 2004, 15, 1265.
- a) T. H. Zhang, P. Lu, F. Wang, G. W. Wang, Org. Biomol. Chem., 2003, 1, 4403.
 b) G. W. Wang, T. H. Zhang, X. Cheng, F. Wang, Org. Biomol. Chem., 2004, 2, 1160.
- a) C. Li, D. Zhang, X. Zhang, S. Wu, X. Gao, Org. Biomol. Chem., 2004, 2, 3464.
 b) G. W. Wang, F. B. Li, Org. Biomol. Chem., 2005, 3, 794.

Received 27 January, 2005